https://www.codewars.com/kata/explosive-sum/train/python
How many ways can you make the sum of a number?
From wikipedia: https://en.wikipedia.org/wiki/Partition_(number_theory)#
In number theory and combinatorics, a partition of a positive integer n, also called an integer partition, is a way of writing n as a sum of positive integers. Two sums that differ only in the order of their summands are considered the same partition. If order matters, the sum becomes a composition. For example, 4 can be partitioned in five distinct ways:
4
3 + 1
2 + 2
2 + 1 + 1
1 + 1 + 1 + 1
Examples
Trivial
sum(-1) # 0
sum(1) # 1
Basic
sum(2) # 2 -> 1+1 , 2
sum(3) # 3 -> 1+1+1, 1+2, 3
sum(4) # 5 -> 1+1+1+1, 1+1+2, 1+3, 2+2, 4
sum(5) # 7 -> 1+1+1+1+1, 1+1+1+2, 1+1+3, 1+2+2, 1+4, 5, 2+3
sum(10) # 42
Explosive
sum(50) # 204226
sum(80) # 15796476
sum(100) # 190569292
Best Practices
Py First:
def exp_sum(n):
if n < 0:
return 0
dp = [1]+[0]*n
for num in xrange(1,n+1):
for i in xrange(num,n+1):
dp[i] += dp[i-num]
return dp[-1]
Py Second:
class Memoize:
def __init__(self, func):
self.func = func
self.cache = {}
def __call__(self, arg):
if arg not in self.cache:
self.cache[arg] = self.func(arg)
return self.cache[arg]
@Memoize
def exp_sum(n):
if n == 0: return 1
result = 0; k = 1; sign = 1;
while True:
pent = (3*k**2 - k) // 2
if pent > n: break
result += sign * exp_sum(n - pent)
pent += k
if pent > n: break
result += sign * exp_sum(n - pent)
k += 1; sign = -sign;
return result